The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

Authors

  • Saeed Khanjany Ghazi Department of Basic Sciences, Babol Noushirvani University of Technology, 47148-71167, Babol, Iran.
  • Somayeh Khademloo Department of Basic Sciences, Babol Noushirvani University of Technology, 47148-71167, Babol, Iran.
Abstract:

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

full text

Multiple results for critical quasilinear elliptic systems involving concave-convex nonlinearities and sign-changing weight functions∗

This paper is devoted to study the multiplicity of nontrivial nonnegative or positive solutions to the following systems    −4pu = λa1(x)|u|q−2u + b(x)Fu(u, v), in Ω, −4pv = λa2(x)|v|q−2v + b(x)Fv(u, v), in Ω, u = v = 0, on ∂Ω, where Ω ⊂ R is a bounded domain with smooth boundary ∂Ω; 1 < q < p < N , p∗ = Np N−p ; 4pw = div(|∇w|p−2∇w) denotes the p-Laplacian operator; λ > 0 is a positive pa...

full text

p-Laplacian problems with critical Sobolev exponent

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

full text

Multiplicity of Positive Solutions for Weighted Quasilinear Elliptic Equations Involving Critical Hardy-Sobolev Exponents and Concave-Convex Nonlinearities

and Applied Analysis 3 When a 0, we set s dp∗ 0, d and t bp∗ 0, b , then 1.1 is equivalent to the following quasilinear elliptic equations: −div ( |∇u|p−2∇u ) − μ |u| p−2u |x| |u|p t −2u |x| λ |u|q−2u |x| in Ω, u 0 on ∂Ω, 1.7 where λ > 0, 1 < p < N, 0 ≤ μ < μ N − p /p , 0 ≤ s, t < p, 1 ≤ q < p and p∗ t p N − t / N − p . Such kind of problem relative with 1.7 has been extensively studied by many...

full text

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...

full text

EXISTENCE OF POSITIVE SOLUTIONS FOR QUASILINEAR ELLIPTIC SYSTEMS INVOLVING THE p-LAPLACIAN

In this article, we study the existence of positive solutions for the quasilinear elliptic system −∆pu = f(x, u, v) x ∈ Ω, −∆pv = g(x, u, v) x ∈ Ω, u = v = 0 x ∈ ∂Ω. Using degree theoretic arguments based on the degree map for operators of type (S)+, under suitable assumptions on the nonlinearities, we prove the existence of positive weak solutions.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  39- 57

publication date 2018-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023